
pyrfc Documentation
Release 1.9.4

SAP

April 01, 2016

Contents

1 Documentation 3
1.1 Introduction . 3
1.2 Installation . 4
1.3 Client scenario . 9
1.4 Server scenario . 14
1.5 Security . 20
1.6 Building from source . 24
1.7 Remarks . 26
1.8 Bibliography . 27

2 API documentation 29
2.1 pyrfc . 29

3 Change log 33
3.1 Change log . 33

4 Indices and tables 37

i

ii

pyrfc Documentation, Release 1.9.4

The pyrfc Python package provides Python bindings for SAP NetWeaver RFC Library, for a comfortable way
of calling ABAP modules from Python and Python modules from ABAP, via SAP Remote Function Call (RFC)
protocol.

It was inspired by Piers Harding’s sapnwrfc package, wrapping the existing SAP NetWeaver RFC Library and
rewritten using Cython.

To start using pyrfc follow the Installation guide.

Contents 1

https://github.com/SAP/PyRFC
https://github.com/piersharding/python-sapnwrfc

pyrfc Documentation, Release 1.9.4

2 Contents

CHAPTER 1

Documentation

1.1 Introduction

The Python connector (a synonym for the pyrfc package) wraps the existing SAP NW RFC Library, often collo-
quially called SAP C connector or SAP NW RFC SDK. To start using pyrfc and similar connectors effectively,
we highly recommend reading a series of insightful articles about RFC communication and SAP NW RFC Library,
published in the SAP Professional Journal (SPJ), in 2009, by Ulrich Schmidt and Guangwei Li: Improve commu-
nication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK Part 1: RFC Client
Programming, Part 2: RFC Server Programming, Part 3: Advanced Topics.

The lecture of these articles and NW RFC SDK Guide (SAP Help) are recommended as an introduction into RFC
communication and programming, while pyrfc documentation is focused merely on technical aspects of pyrfc
API.

1.1.1 Example usage

In order to call remote enabled ABAP function module, we need to open a connection with valid logon credentials.

from pyrfc import Connection
conn = Connection(user='me', passwd='secret', ashost='10.0.0.1', sysnr='00', client='100')

Using an open connection we can call remote enabled ABAP function modules from Python.

result = conn.call('STFC_CONNECTION', REQUTEXT=u'Hello SAP!')
print result
{u'ECHOTEXT': u'Hello SAP!',
u'RESPTEXT': u'SAP R/3 Rel. 702 Sysid: ABC Date: 20121001 Time: 134524 Logon_Data: 100/ME/E'}

Finally, the connection is closed automatically when the instance is deleted by the garbage collector. As this may
take some time, we may either call the close() method explicitly or use the connection as a context manager:

with Connection(user='me', ...) as conn:
conn.call(...)

connection automatically closed here

1.1.2 Functional coverage

The goal of the Python connector development was to provide a package for interacting with SAP ABAP systems
on an intuitive and adequate abstract level. Not each and every available function provided by SAP NW RFC
Library is therefore wrapped into Python, but classes and methods are implemented, covering the most of the use
cases relevant for projects done so far. The drawback of this approach is that fine-grained RFC manipulation is
not possible sometimes but coverage can be extended if needed.

In line with this approach, we distinguish between two basic scenarios:

3

https://scn.sap.com/docs/DOC-52886
https://scn.sap.com/docs/DOC-52886
https://scn.sap.com/docs/DOC-52887
https://scn.sap.com/docs/DOC-52888
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/48/a88c805134307de10000000a42189b/content.htm?frameset=/en/48/a994a77e28674be10000000a421937/frameset.htm

pyrfc Documentation, Release 1.9.4

• Client, Python client calls ABAP server

• Server, ABAP client calls Python server

The coverage is as follows:

Client Server
Standard functionality, e.g. invoking arbitrary RFC yes yes (1)
Transactions (tRFC/qRFC) yes no
Background RFC yes (2) no
RFC Callbacks no no
Secure network connect (SNC) yes yes (1)
Single Sign on (SSO) no no

Note:

1. Server functionality is currently not working with Python 32bit under Windows.

2. Background RFC is currently not working.

3. In projecs done so far mainly the Client scenario is used and lot more tested then Server. The Server scenario
is therefore considered experimental for now.

1.2 Installation

Python connector is a wrapper for the SAP NetWeaver RFC Library and you need to obtain and install it first.

If Python is not already installed on your system, you need to download and install Python as well.

After having SAP NW RFC Library and Python installed on your system, you can download and install one of
provided pyrfc eggs, relevant for your platform and start using pyrfc.

You can also clone this repository and build pyrfc from the source code, following Building from source.

1.2.1 SAP NW RFC Library Installation

The entry page for SAP NetWeaver RFC library is SAP Service Marketplace (SMP), http://service.sap.com/rfc-
library, with detailed instructions how to download, use and compile.

Basically, you should search for SAP NW RFC SDK 7.20, in Software Downloads of SAP Software
Download Center on SMP Support Portal, download SAP NW RFC Library adequate for your platform and
Python version combination (see the matrix below) and unpack using SAPCAR archive utility.

SAPCAR can be donwloaded from the SMP as well and you should search for SAPCAR 7.20 Which SAP NW
RFC Library version is relevant for your platform? Here are platform/Python combinations tested so far:

Plat-
form

Python
version

NetWeaver RFC
Library (SMP)

Filename (SMP) Python egg

Win-
dows

Python 2.7
(32bit)

Windows Server on IA32
32bit

NWRFC_20-20004566.SARpyrfc-1.9.3-py2.7-
win32.egg

Win-
dows

Python 2.7
(64bit)

Windows on x64 64bit NWRFC_20-20004568.SARpyrfc-1.9.3-py2.7-win-
amd64.egg

Linux Python 2.7
(64bit)

Linux on x86_64 64bit NWRFC_20-20004565.SARpyrfc-1.9.3-py2.7-linux-
x86_64.egg

Note:

• SAP NW RFC Library is fully backwards compatible and it is reccomended using the newest version also
for older backend system releases

4 Chapter 1. Documentation

http://service.sap.com/rfc-library
http://service.sap.com/rfc-library
http://service.sap.com/sap/support/notes/1025361
https://websmp103.sap-ag.de/~sapidb/011000358700000869672007.pdf
https://websmp103.sap-ag.de/sap/support/notes/1056696
http://service.sap.com/support

pyrfc Documentation, Release 1.9.4

1.2. Installation 5

pyrfc Documentation, Release 1.9.4

• SMP search terms and filenames given here will not be regularly updated, you should always search for
current version or filename in Software Downloads.

• The server functionality is currently not working under Windows 32bit

The Python connector relies on SAP NW RFC Library and must be able to find library files at runtime. Therefore,
you might either install the SAP NW RFC Library in the standard library paths of your system or install it in any
location and tell the Python connector where to look.

Here are configuration examples for Windows and Linux operating systems.

Windows

1. Create an directory, e.g. c:\nwrfcsdk.

2. Unpack the SAR archive to it, e.g. c:\nwrfcsdk\lib shall exist.

3. Include the lib directory to the library search path on Windows, i.e. extend the PATH environment variable.

Linux

1. Create the directory, e.g. /usr/sap/nwrfcsdk.

2. Unpack the SAR archive to it, e.g. /usr/sap/nwrfcsdk/lib shall exist.

3. Include the lib directory in the library search path:

• As root, create a file /etc/ld.so.conf.d/nwrfcsdk.conf and enter the following values:

include nwrfcsdk
/usr/sap/nwrfcsdk/lib

• As root, run the command ldconfig.

1.2.2 Python Connector Installation

Windows

• If not already installed, you need to install Python first.

First, decide whether you want to go with the 32bit or 64bit version and use standard Windows installers

Python 2.7 (32 bit), http://www.python.org/ftp/python/2.7.6/python-2.7.6.msi

Python 2.7 (64 bit) http://www.python.org/ftp/python/2.7.6/python-2.7.6.amd64.msi

Add Python and Scripts directories to PATH environment variable, e.g.

set PATH=c:\Python27;c:\Python27\Scripts;%PATH%

• Install easy_install

Use the distribute implementation of easy_install by downloading
https://bootstrap.pypa.io/ez_setup.py and running

python ez_setup.py

Note: At this point you may like to install the pip package which extends the functionality of
easy_install. However, pip cannot handle binary build distributions, which will be used later.

If you are in a internal network that uses a proxy to access resources from the internet, you may encounter
connection problems.

6 Chapter 1. Documentation

http://www.python.org/ftp/python/2.7.6/python-2.7.6.msi
http://www.python.org/ftp/python/2.7.6/python-2.7.6.amd64.msi
https://bootstrap.pypa.io/ez_setup.py
http://pypi.python.org/pypi/pip

pyrfc Documentation, Release 1.9.4

• Virtual environment (optional)

You may now create an virtual environment and activate it.

• Install the Python connector

Open the command prompt with administrator rights, change to the pyrfc\dist directory and install
adequate pyrfc egg. You need administrator rights, otherwise easy_install will open a new window
and close it after execution – leaving you without the option to see what was done or what was the error.

easy_install <egg name>

Please look up the correct egg name depending on your platform and Python version.

• Run python and type from pyrfc import *. If this finishes silently, without oputput, the installa-
tion was successful.

Python on Linux

• Install Python 2.7 (64bit, usually the default) via your preferred package manager

• Install easy_install

Use the distribute implementation of easy_install by downloading
https://bootstrap.pypa.io/ez_setup.py and running

python ez_setup.py

Note: At this point you may like to install the pip package which extends the functionality of
easy_install. However, pip cannot handle binary build distributions, which will be used later.

If you are in a internal network that uses a proxy to access resources from the internet, you may encounter
connection problems.

• Virtual environment (optional)

You may now create an virtual environment and activate it.

• Install the Python connector:

easy_install <egg name>

Please look up the correct egg name depending on your platform and Python version.

• Run python, type from pyrfc import * and it it finishes silently, without any output, the installa-
tion was successful.

1.2.3 Virtual environments

We recommend using a virtual environment for the installation. This allows you to isolate the Python connector
installation from your system wide Python installation.

We will now show the example usage for a Windows user that wants to create a virtual environment in
C:\PythonVE\py27-pyrfc.

1. Install virtualenv on your system.

C:\>pip virtualenv

2. Open a command prompt and change to a directory where you want to create a virtual environment and
create a virtual environment.

C:\>cd PythonVE
C:\PythonVE\>virtualenv --distribute --no-site-packages py27-sapwnrfc2

1.2. Installation 7

https://bootstrap.pypa.io/ez_setup.py
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/virtualenv

pyrfc Documentation, Release 1.9.4

(Since virtualenv version 1.7, the --no-site-packages option is the default and can be
omitted.)

3. Activate the environment via

C:\PythonVE\>cd py27-pyrfc
C:\PythonVE\py27-pyrfc\>Scripts\activate.bat
(py27-pyrfc) C:\PythonVE\py27-pyrfc\>

(On Linux use source bin/activate.)

4. After working on your project, you leave the virtual environment with

(py27-pyrfc) C:\PythonVE\py27-pyrfc\>deactivate
C:\PythonVE\py27-pyrfc\>

1.2.4 Problems

Behind a Proxy

If you are within an internal network that accesses the internet through an HTTP(S) proxy, some of the shell
commands will fail with urlopen errors, etc.

Assuming that your HTTP(S) proxy could be accessed via http://proxy:8080, on Windows you can com-
municate this proxy to your shell via:

SET HTTP_PROXY=http://proxy:8080
SET HTTPS_PROXY=http://proxy:8080

or permanently set environment variables.

SAP NW RFC Library Installation

1. ImportError: DLL load failed: The specified module could not be
found.

(Windows) This error indicates that the Python connector was not able to find the C connector on your
system. Please check, if the lib directory of the C connector is in your PATH environment variable.

2. ImportError: DLL load failed: %1 is not a valid Win32 application.

(Windows) This error occurs when SAP NW RFC Library 64bit version is installed on a system with 32bit
version Python.

Environment variables

Windows

The environment variable may be set within a command prompt via the set command, e.g.

• set PATH=%PATH%;C:\nwrfcsdk\lib (extend PATH with the C connector lib)

• set HTTPS_PROXY=proxy:8080 (setting an proxy for HTTPS communication)

When the command prompt is closed, the environment variable is reset. To achieve a persistent change of the
environment variable, do the following (Windows 7):

1. Open the Start Menu and type environment into the search box.

2. A window opens in which the user variables are displayed in the upper part and the system variables in the
lower part. You may select and edit the desired variable.

3. The modified variables are used when a new command prompt is opened.

8 Chapter 1. Documentation

pyrfc Documentation, Release 1.9.4

1.3 Client scenario

In Client scenario, Python calls remote enabled ABAP function module (FM) 1 via SAP RFC protocol, as shown
in Introduction. To introduce the functionality, we will start with an three examples, then show some details of the
Connection, and finally cover some implementation details.

1.3.1 Examples

To create a connection, construct a Connection object and pass the credentials that should be used to open a
connection to an SAP backend system.

>>> from pyrfc import Connection
>>> conn = Connection(user='me', passwd='secret', ashost='10.0.0.1', sysnr='00', client='100')

For the examples we usually store the logon information in a config document (sapnwrfc.cfg) that is read with
ConfigParser. Thus, if the logon information is stored in a dictionary, we may construct a Connection instance
by unpacking the dictionary, e.g.

>>> params = {'user': 'me', 'passwd': 'secret', 'ashost':'10.0.0.1', 'sysnr':'00', 'client':'100'}
>>> conn = Connection(**params)

Example clientStfcStructure.py

Lets do a remote function call with a more complex set of parameters.

A function module knows four types of parameters:

1. IMPORT parameters, set by the client.

2. EXPORT parameters, set by the server.

3. CHANGING parameters, set by the client, can be modified by the server.

4. TABLE parameters, set by the client, can be modified by the server.

A simple example of an RFC with different parameter types can be found in the file
clientStfcStructure.py in the examples/ directory. The FM STFC_STRUCTURE uses the IM-
PORT parameter IMPORTSTRUCT, copies it to the EXPORT parameter ECHOSTRUCT, then modifies it and
appends it to the TABLE parameter RFCTABLE. Furthermore, it fills the EXPORT parameter RESPTEXT with
some system/call information.

The parameter IMPORTSTRUCT is of type RFCTEST, which contains 12 fields of different types. We fill these
fields with example values (ll. 7-22). (Note: A comment after each fields tells something about the ABAP
datatype.)

imp = dict(
RFCINT1=0x7f, # INT1: Integer value (1 byte)
RFCINT2=0x7ffe, # INT2: Integer value (2 bytes)
RFCINT4=0x7ffffffe, # INT: integer value (4 bytes)
RFCFLOAT=1.23456789, # FLOAT

RFCCHAR1=u'a', # CHAR[1]
RFCCHAR2=u'ij', # CHAR[2]
RFCCHAR4=u'bcde', # CHAR[4]
RFCDATA1=u'k'*50, RFCDATA2=u'l'*50, # CHAR[50] each

RFCTIME=datetime.time(12,34,56), # TIME
RFCDATE=datetime.date(2012,10,03), # DATE

1 To be invoked externally, the function module needs to be remote-enabled. For the sake of readability, we will use the shorter term (“FM”)
throughout the text.

1.3. Client scenario 9

http://docs.python.org/library/configparser.html
http://docs.python.org/tutorial/controlflow.html#unpacking-argument-lists

pyrfc Documentation, Release 1.9.4

RFCHEX3='\x66\x67\x68' # BYTE[3]: String with 3 hexadecimal values (='fgh')

Afterwards, the FM is invoked via the call(function_name, **kwargs) method. It takes the FM’s
name as the first argument and then keyword arguments that describes the IMPORT, CHANGING, and TABLE
parameters.

result = conn.call('STFC_STRUCTURE', IMPORTSTRUCT=imp)

The result contains all EXPORT, CHANGING, and TABLE parameters. It is printed out:

{u'ECHOSTRUCT': {u'RFCCHAR1': u'a',
u'RFCCHAR2': u'ij',
u'RFCCHAR4': u'bcde',
u'RFCDATA1': u'kk',
u'RFCDATA2': u'll',
u'RFCDATE': datetime.date(2012, 10, 3),
u'RFCFLOAT': 1.23456789,
u'RFCHEX3': 'fgh',
u'RFCINT1': 127,
u'RFCINT2': 32766,
u'RFCINT4': 2147483646,
u'RFCTIME': datetime.time(12, 34, 56)},

u'RESPTEXT': u'SAP R/3 Rel. 702 Sysid: E1Q Date: 20121012 Time: 212344',
u'RFCTABLE': [{u'RFCCHAR1': u'X',

u'RFCCHAR2': u'YZ',
u'RFCCHAR4': u'E1Q',
u'RFCDATA1': u'kk',
u'RFCDATA2': u'll',
u'RFCDATE': datetime.date(2012, 10, 12),
u'RFCFLOAT': 2.23456789,
u'RFCHEX3': '\xf1\xf2\xf3',
u'RFCINT1': 128,
u'RFCINT2': 32767,
u'RFCINT4': 2147483647,
u'RFCTIME': datetime.time(21, 23, 44)}]}

There are some points worth mentioning.

1. The types of the variables are automatically converted from and to Python objects in an intuitive way.

2. Parameters are represented as key-value pairs in a dictionary. For more complex types, the value is a
dictionary (for structures) or a list of dictionaries (for tables).

Example clientPrintDescription.py

As you have seen in the previous example, all you need to know for calling a FM is the FM’s name and its
parameters – the so called metadata description. However, maybe you don’t know this in advance, so what can
you do?

A simple approach is to login to the SAP backend system and investigate the function module’s description in
transaction SE37. Alternatively, the get_function_description() method could be used.

The example script clientPrintDescription.py retrieves and prints the metadata description for a given
function module’s name 2. The get_function_description() returns a FunctionDescription
object that contains information about the parameters. A parameter may have a type description (a
TypeDescription object), which contains information about the type’s fields. The scripts iterates over the
parameters and fields and prints them out:

Parameters of function: STFC_STRUCTURE
NAME PARAMETER_TYPE DIRECTION NUC_LENGTH UC_LENGTH DECIMALS DEFAULT_VALUE OPTIONAL TYPE_DESCRIPTION PARAMETER_TEXT
IMPORTSTRUCT RFCTYPE_STRUCTURE RFC_IMPORT 144 264 0 False RFCTEST Importing structure

2 This example was inspired by the printDescription.c of Schmidt and Li (2009a, pp. 3ff).

10 Chapter 1. Documentation

pyrfc Documentation, Release 1.9.4

-----------(Structure of RFCTEST (n/uc_length=144/264)--
NAME FIELD_TYPE NUC_LENGTH NUC_OFFSET UC_LENGTH UC_OFFSET DECIMALS TYPE_DESCRIPTION
RFCFLOAT RFCTYPE_FLOAT 8 0 8 0 16 None
RFCCHAR1 RFCTYPE_CHAR 1 8 2 8 0 None
RFCINT2 RFCTYPE_INT2 2 10 2 10 0 None
RFCINT1 RFCTYPE_INT1 1 12 1 12 0 None
RFCCHAR4 RFCTYPE_CHAR 4 13 8 14 0 None
RFCINT4 RFCTYPE_INT 4 20 4 24 0 None
RFCHEX3 RFCTYPE_BYTE 3 24 3 28 0 None
RFCCHAR2 RFCTYPE_CHAR 2 27 4 32 0 None
RFCTIME RFCTYPE_TIME 6 29 12 36 0 None
RFCDATE RFCTYPE_DATE 8 35 16 48 0 None
RFCDATA1 RFCTYPE_CHAR 50 43 100 64 0 None
RFCDATA2 RFCTYPE_CHAR 50 93 100 164 0 None

-----------(Structure of RFCTEST)-----------
--
RFCTABLE RFCTYPE_TABLE RFC_TABLES 144 264 0 False RFCTEST Importing/exporting table

-----------(Structure of RFCTEST (n/uc_length=144/264)--
[...]

-----------(Structure of RFCTEST)-----------
--
ECHOSTRUCT RFCTYPE_STRUCTURE RFC_EXPORT 144 264 0 False RFCTEST Exporting structure

-----------(Structure of RFCTEST (n/uc_length=144/264)--
[...]

-----------(Structure of RFCTEST)-----------
--
RESPTEXT RFCTYPE_CHAR RFC_EXPORT 255 510 0 False None Exporting response message
--

Once again some remarks:

1. The parameter_type and field_type are not the ABAP types (that were given as a comment in the
first example), but the type names given by the C connector. For more details on the type conversion, see
the technical details.

2. Most of the information presented here is not relevant for client usage. The important values are:

FunctionDescription.parameters name, parameter_type, direction, nuc_length
(in case of fixed length strings or numeric strings), decimals (in case of decimal types –
RFCTYPE_BCD), and optional.

TypeDescription.fields name, field_type, nuc_length (in case of fixed length strings or
numeric strings), and decimals (in case of decimal types – RFCTYPE_BCD).

3. Later, in the Server scenario usage, the classes FunctionDescription and TypeDescription will
be used again when installing a function on a Python server.

Errors

If something goes wrong while working with the RFC functionality, e.g. invoking a function module that does not
exist in the backend, an error is raised:

>>> python clientPrintDescription.py STFC_STRUCTURES
... An error occurred.
... [...]
... pyrfc._exception.ABAPApplicationError: Error 5: [FU_NOT_FOUND] ID:FL Type:E Number:046 STFC_STRUCTURES ABAP: FL E 046 STFC_STRUCTURES

For further description see Errors.

1.3. Client scenario 11

pyrfc Documentation, Release 1.9.4

Example clientIDocUnit.py

Warning: The background protocol (bgRFC) is not working in the current version. Please use only
tRFC/qRFC protocols.

Certain operations, e.g. sending IDocs, are not possible with the RFC protocol. Rather, a protocol with trans-
actional guarantees has to be used. The first transactional protocols were tRFC (transactional RFC) and qRFC
(queued RFC). Afterwards, bgRFC (background RFC) were introduced. All these protocols have in common that
they group one or more FM invocations as one logical unit of work (LUW). Consequently, a Connection object
offers various methods to work with such units.

Working with units is as follows:

1. Initialize a unit by using initialize_unit(). The method returns a unit descriptor, which is used later
on. When initializing the unit, decide whether to use the bgRFC protocol (default) or the tRFC or qRFC
protocol by setting background=False.

2. The next step is to create the unit in the backend system, prepare the invocation of one or more RFC in it
and submit the unit to the backend. All this functionality is provided by fill_and_submit_unit().
The method takes two required parameters. The first one is a unit descriptor as returned by
initialize_unit(). The second one is a list of RFC descriptions that should be executed in the
unit. A RFC descriptions consists of a tuple with the name of the FM as the first element and a dictionary
describing the function container as the second element.

3. If fill_and_submit_unit() ended successfully, i.e. without raising an exception, the unit should be
confirmed by confirm_unit(). In case there is a problem with the unit, it can be deleted in the backend
system by calling destroy_unit().

The current state of a unit can be – in case of units using the bgRFC protocol – retrieved by
get_unit_state().

The example script clientIDocUnit.py provides examples for sending iDocs. The script was inspired by
iDocClient.c of Schmidt and Li (2009c, pp. 2ff), but omits the implementation of client side features that
assure atomic execution (see also next section).

Note: Use transaction WE05 to see the IDocs recorded in the SAP backend.

Note: In case you are using queued units (qRFC), use transaction SMQR to register a new queue. In transaction
SMQ2 (qRFC monitor) you see the incoming calls. Note that it is possible to send the unit to a non-registered
queue name. It will be held with status ready in the monitor until it is deleted or the queue registered. For
further information, see qRFC Administration.

Assuring atomic execution

In order to assure that the unit is executed exactly once, it is of great importance that the end system on the client
side initiates the confirmation. Citing Schmidt and Le (sapnwrfc.h, l. 1361ff) with modifications:

After [fill_and_submit_unit()] returned successfully, you should use this function to cleanup
the status information for this unit on backend side. However, be careful: if you have
a three-tier architecture, don’t bundle Submit and Confirm into one single logical step.
Otherwise you run the risk, that the middle tier (the NW RFC lib) successfully executes
both, the Submit and the Confirm, but on the way back to the first tier an error occurs
and the first tier can not be sure that the unit was really executed in the backend and
therefore decides to re-execute it. This will now result in a duplicate execution in the
backend, because the Confirm step in the first try has already deleted the UID in the
backend, and consequently the backend is no longer protected against re-execution of this

12 Chapter 1. Documentation

http://help.sap.com/erp2005_ehp_05/helpdata/en/0c/275c3c60065627e10000000a114084/content.htm

pyrfc Documentation, Release 1.9.4

UID. In a three-tier architecture, the first tier should trigger both steps separately:
first the Submit, and after it knows that the Submit was successful, the Confirm.
Also in case the Confirm runs into an error, [...] try the Confirm again at a later point [.]

Further details to this issue can be found in Schmidt and Li (2009c, pp. 4-5).

1.3.2 Configuration of a connection

Upon construction, a Connection object may be configured in various ways by passing a config parameter.

>>> conn = Connection(config = {'keyword': value, ...}, **params)

The following keywords for the config dictionary are possible:

rstrip

ABAP allows two different ways to store strings: A fixed length string type C and a dynamic length string type
STRING. Strings of type C are padded with blanks, if the content is shorter than the predefined length. In order to
unify the connector’s behavior regarding strings, the rstrip option was introduced. If set to True, all strings
are right-stripped before being returned by an RFC call.

Default: True

return_import_params

Usually, you do not need the IMPORT parameters in the result of Connection.call(). If
return_import_params is set to False, parameters of type IMPORT are filtered out.

Default: False

Note: All the parameters are public object attributes, i.e. they can be modified after the object’s construction.

1.3.3 Selected Connection methods

Besides the mentioned methods in the examples, the Connection offers some basic methods for working with
a connection:

Connection.ping
Connection.reset_server_context
Connection.get_connection_attributes
Connection.close

1.3.4 Technical details

This section describes the Data types and the Data transmission.

Data types

A remote function call executes ABAP code, which works with parameters that have an ABAP data type. Hence,
when you look at the metadata description you will find ABAP data types for the parameters.

The Python connector does not provide ABAP data types to be instantiated and used within Python code, but
rather converts between ABAP data types and Python built-in types.

1.3. Client scenario 13

pyrfc Documentation, Release 1.9.4

Type
Category

ABAP Meaning RFC Python Remark

numeric I Integer (whole number) INT int Internal 1 and 2 byte integers (INT1,
INT2) are also mapped to int

numeric F Floating point number FLOAT float
numeric P Packed number / BCD

number
BCD Deci-

mal
character C Text field

(alphanumeric
characters)

CHAR unicode

character D Date field (Format:
YYYYMMDD)

DATE date-
time.date

character T Time field (Format:
HHMMSS)

TIME date-
time.time

character N Numeric text field
(numeric characters)

NUM unicode

hexadeci-
mal

X Hexadecimal field BYTE str
[bytes]

variable
length

STRING Dynamic length string STRINGunicode

variable
length

XSTRINGDynamic length
hexadecimal string

BYTE str
[bytes]

Further details on predefined ABAP types are available online.

The Python representation of a parameter is a simple key-value pair, where the key is the name of the parameter
and the value is the value of the parameter in the corresponding Python type. Beside the mentioned types, there
are tables and structures:

• A structure is represented in Python by a dictionary, with the structure fields’ names as dictionary keys.

• A table is represented in Python by a list of dictionaries.

For an example see Example clientStfcStructure.py.

Data transmission

The data transmission in the C connector takes place as follows: If you want to invoke an RFC, a function container
is constructed from the metadata description of the RFC. The function container is a memory structure to which
the parameters are written. Then the RFC is invoked and the function container is passed to the backend system.
The backend system now executes the RFC on the given function container, i.e. it reads some values from the
function container and writes other values to it. Finally, the function container is passed back to the C connector.

This has some important consequences:

• There is no technical distinction between input and output values.

• In the metadata description, each parameter is classified as IMPORT, EXPORT, CHANGING, and TA-
BLES. Hence, there is a convention regarding which parameters are set when the RFC is invoked and which
parameters are filled or changed after the RFC’s execution.

• It is possible, though not good practice, to set the output values (i.e. parameter of type EXPORT) when
invoking an RFC. Similarly, it is possible that an RFC will modify the input values (parameters of type
IMPORT). However, a well written RFC will not manipulate the input values and initialize the output
values to a default value.

1.4 Server scenario

Server usage refers to a situation, in which a Python script serves RFC requests that are sent by an SAP backend
system.

14 Chapter 1. Documentation

http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb2fd9358411d1829f0000e829fbfe/content.htm

pyrfc Documentation, Release 1.9.4

To illustrate the usage, we will first show an Example serverStfcConnection.py, then describe some basic aspects
of the Server and finally cover some Advanced topics.

Note: For this section, we assume previous knowledge from the Client scenario section. Furthermore, the server
related article by Schmidt and Li (2009b) is highly recommended.

Warning: Server functionality is currently not working with Python 32bit under Windows.

1.4.1 Example serverStfcConnection.py

Creating a Python RFC server consists basically of two parts:

1. A Server object that stores metadata about the functions that it will serve, and that later registers at a
gateway.

2. For each served function, a callback function (or: implementing function) has to be provided.

A simple example for a server can be found in the file serverStfcConnection.py in the examples/
directory. This server offers a function with the same metadata as STFC_CONNECTION, but will return a slightly
modified version as the usual ABAP implementation.

The metadata for STFC_CONNECTION consists of

• one IMPORT parameter – REQUTEXT – and

• two EXPORT parameters – ECHOTEXT (usually a copy of REQUTEXT) and RESPTEXT (usually some
connection/system details).

STFC_CONNECTION callback function

Lets look at our callback function (ll. 9-14), that implements the server logic:

config = ConfigParser()
config.read('sapnwrfc.cfg')

Callback function
def my_stfc_connection(request_context, REQUTEXT=""):

return {

The callback function takes two parameters. The first one, request_context contains call-specific informa-
tion and is obligatory for any callback function. Afterwards, the parameters depend on the function’s metadata
description. In our case, there is one IMPORT parameter that is expected by the callback function.

The callback function fills the value for the two EXPORT parameters and returns them in a dictionary.

STFC_CONNECTION Server

The Server class offers server related functionality. In the example, its usage is found in lines 23-27.

params_connection = config._sections['connection']
conn = Connection(**params_connection)
func_desc_stfc_connection = conn.get_function_description("STFC_CONNECTION")

Instantiate server with gateway information for registering, and

• First, a Server object is created and gateway parameters are passed.

• Second, a function is installed via install_function(). The parameters are a
FunctionDescription object and a callback function.

1.4. Server scenario 15

pyrfc Documentation, Release 1.9.4

• Finally, the server serves requests by invoking the serve() method.

A remark regarding the second point: The function description for our callback function is retrieved from an SAP
system in lines 17-20.

'RESPTEXT': u"Python server here. Connection attributes are: "
u"User '{user}' from system '{sysId}', client '{client}', "
u"host '{partnerHost}'".format(**request_context['connection_attributes'])

}

Retrieving functions descriptions in such a way is convenient for various reasons (cf. Schmidt and Li (2009b, p.
2)). However, hard coding of function descriptions is possible (cf. Example serverFunctionDescription.py).

Registering the server

Registering the server needs some preparation in the SAP backend. Configuration of RFC connections is handled
in transaction SM59. Create a new RFC destination (e.g. PYTHON_SVR_DEST) of type T and choose under
technical settings:

• Activation type: Registered Server Program

• Registered Server Program: Program ID <your program ID>

The program ID is used when instantiating a Server object.

Invoking the server

A simple approach to invoke our server is to

1. log on to an SAP backend system,

2. use transaction SE37,

3. test/execute the function module STFC_CONNECTION, and

4. set RFC target sys. to the RFC destination of the server (e.g. PYTHON_SVR_DEST).

1.4.2 Server

For server usage, the Python connector offers the class Server. An object is instantiated with gateway parame-
ters. The server will register at this gateway before serving requests.

Gateway parameters are:

GWHOST The name of the gateway host

GWSERV The name of the gateway server

PROGRAM_ID The name under which the Python connector will register at the gateway. This corresponds to an
RFC destination in transaction SM59 of type “T” in registration mode.

TRACE Sets the trace level, cf. the documentation of RfcSetTraceLevel in sapnwrfc.h of the C connec-
tor.

SAPROUTER An SAP router string

Furthermore, the server accepts a config parameter.

Config

Upon construction, a Server object may be configured in various ways by passing a config parameter.

16 Chapter 1. Documentation

pyrfc Documentation, Release 1.9.4

rstrip

ABAP allows two different ways to store strings: A fixed length string type C and a dynamic length string type
STRING. Strings of type C are padded with blanks, if the content is shorter than the predefined length. In order
to unify the connectors behavior regarding strings, the rstrip option was introduced. If set to True, all strings
are right stripped before being passed to the callback function.

Default: True

Server functions

The Server.install_function() installs a function in the server. It expects two parameters: a
FunctionDescription object for the metadata description and a callback function that implements the server
logic.

The callback function will be called if the gateway receives an RFC call for the given FunctionDescription
and if the server object is serving requests (Server.serve()). In this case, the callback function is called with
the following parameters:

request_context A dictionary with the following key:

connection_attributes A dictionary with connection attributes of the client. The keys are the
same as returned by Connection.get_connection_attributes(), excluding alive and
active_unit. As done by Connection.get_connection_attributes(), the values are
right stripped strings. These connection attributes may be used for authorization checks.

For a future release, information about active parameters will be given here.

<PARAMETERS> All IMPORT, CHANGING, and TABLE parameters of the FunctionDescription.

1.4.3 Advanced topics

Raising exceptions

An external server program is allowed to throw errors as a usual ABAP function module. To do so, a certain type
of exception is raised.

1.4. Server scenario 17

pyrfc Documentation, Release 1.9.4

Error
type

Corre-
sponds to
ABAP
statement

In
Python
trig-
gered
via

Arguments
to pass

Effect
on
con-
nec-
tion

Effect in the back end (ABAP)

ABAP
excep-
tion

RAISE
<exception
key>

raise
ABA-
PAppli-
cation-
Error(...)

key Re-
mains
open

SY-SUBRC is set corresponding to the
exception key in the EXCEPTIONS clause.

ABAP
excep-
tion
with
details

MESSAGE
...
RAISING
<exception
key>

raise
ABA-
PAppli-
cation-
Error(...)

key,
msg_type,
msg_class,
msg_number,
msg_v1-v4

Re-
mains
open

As above. The following fields are filled:
SY-MSGTY, SY-MSGID, SY-MSGNO, and
SY-MSGV1-V4.

ABAP
mes-
sage

MESSAGE
...

raise
ABAPRun-
timeEr-
ror(...)

msg_type,
msg_class,
msg_number,
msg_v1-v4

Is
closed

SY-SUBRC is set corresponding to the
SYSTEM_FAILURE key in the
EXCEPTIONS clause and the SY-MSG
fields are filled as above.

System
failure

raise
Exter-
nalRun-
timeEr-
ror(...)

message Is
closed

SY-SUBRC is set corresponding to the
SYSTEM_FAILURE key in the
EXCEPTIONS clause and the parameter
specified in the MESSAGE addition is
filled.

Other exceptions are not permitted. For further details on error raising cf. Schmidt and Li (2009b, pp. 6ff).

Note that the arguments have a maximum length. If a longer string is passed, only the first valid number of
characters will be used.

• key: 128 chars

• message: 512 chars

• msg_type: 1 char

• msg_class: 20 chars

• msg_number: 3 chars

• msg_v1-v4: 50 chars each

Authorization

At the current state of the Python connector, an authorization check has to be implemented in the callback function
by evaluating the connection attributes found in request_context[’connection_attributes’] (cf.
Server functions).

Hard-coded function descriptions

In some cases, it is not possible to retrieve the metadata from an SAP backend system (cf. Schmidt and Li (2009c,
pp. 9ff)). For these situations, objects of FunctionDescription and TypeDescription can be hard-
coded.

The required methods are

FunctionDescription.add_parameter
TypeDescription.add_field

18 Chapter 1. Documentation

pyrfc Documentation, Release 1.9.4

Example serverFunctionDescription.py

Similar to the example hardCodedServer.c of the C connector, in the file
serverFunctionDescription.py in the examples/ directory, a function description – and in-
cluded type descriptions – are constructed manually. In line 3-15 we define a TypeDescription object
consisting of three fields:

animals = TypeDescription("ANIMALS", nuc_length=20, uc_length=28)
animals.add_field(name=u'LION', field_type='RFCTYPE_CHAR',

nuc_length=5, uc_length=10,
nuc_offset=0, uc_offset=0

)
animals.add_field(name=u'ELEPHANT', field_type='RFCTYPE_FLOAT', decimals=16,

nuc_length=8, uc_length=8,
nuc_offset=8, uc_offset=16,

)
animals.add_field(name=u'ZEBRA', field_type='RFCTYPE_INT',

nuc_length=4, uc_length=4,
nuc_offset=16, uc_offset=24

)

Afterwards, a FunctionDescription object is created and several fields are added.

func_desc = FunctionDescription("I_DONT_EXIST")
func_desc.add_parameter(name=u'DOC', field_type='RFCTYPE_INT',

direction='RFC_IMPORT',
nuc_length=4,
uc_length=4

)
func_desc.add_parameter(name=u'CAT', field_type='RFCTYPE_CHAR',

direction='RFC_IMPORT',
nuc_length=5,
uc_length=10

)
func_desc.add_parameter(name=u'ZOO', field_type='RFCTYPE_STRUCTURE',

direction='RFC_IMPORT',
nuc_length=20,
uc_length=28,
type_description=animals

)
func_desc.add_parameter(name=u'BIRD', field_type='RFCTYPE_FLOAT',

direction='RFC_IMPORT',
nuc_length=8,
uc_length=8,
decimals=16

)
func_desc.add_parameter(name=u'COW', field_type='RFCTYPE_CHAR',

direction='RFC_EXPORT',
nuc_length=3,
uc_length=6

)
func_desc.add_parameter(name=u'STABLE', field_type='RFCTYPE_STRUCTURE',

direction='RFC_EXPORT',
nuc_length=20,
uc_length=28,
type_description=animals

)
func_desc.add_parameter(name=u'HORSE', field_type='RFCTYPE_INT',

direction='RFC_EXPORT',
nuc_length=4,
uc_length=4

)

1.4. Server scenario 19

pyrfc Documentation, Release 1.9.4

1.5 Security

Plain RFC connections are mainly used for prototyping, while in production secure connections are required. For
more information on RFC security see:

• Security on SAP Service Marketplace

• RFC Security Best Practices on SAP SCN

• Secure Network Communication (SNC) - SAP Help

• SNC User Guide

SAP NW RFC Library supports plain and secure connection with following authentication methods:

• Plain with user / password

• SNC

– with User PSE

– with X509

NW ABAP servers support in addition:

• SAP logon tickets

• Security Assertion Markup Language (SAML)

Assuming you are familiar with abovementioned concepts and have ABAP backend system configured for SNC
communication, here you may find connection strings examples, for testing plain and secure RFC connections,
with various authentication methods.

1.5.1 Authentication

Plain with user / password

The simplest and least secure form of the user authentication.

ABAP_SYSTEM = {
'user': 'demo',
'passwd': 'welcome',

'name': 'I64',
'client': '800',
'ashost': '10.0.0.1',
'sysnr': '00',
'saprouter': SAPROUTER,
'trace': '3'

}

c = get_connection(ABAP_SYSTEM) # plain

SNC with User PSE

User PSE is used for opening the SNC connection and the same user is used for the authentication (logon) in NW
ABAP backend. Generally not recomended, see SAP Note 1028503 - SNC-secured RFC connection: Logon ticket
is ignored

Prerequisites

• SNC name must be configured for the ABAP user in NW ABAP system, using transaction SU01

• SAP Single Sign On must be configured on a client and the user must be logged in on a client.

20 Chapter 1. Documentation

https://service.sap.com/security
http://wiki.scn.sap.com/wiki/display/Security/Best+Practice+-+How+to+analyze+and+secure+RFC+connections
http://help.sap.com/saphelp_nw70ehp1/helpdata/en/0a/0a2e0fef6211d3a6510000e835363f/frameset.htm
http://scn.sap.com/docs/DOC-14065
http://help.sap.com/saphelp_nw73/helpdata/en/4c/61a6c6364012f3e10000000a15822b/content.htm?frameset=/en/4c/6269c8c72271d0e10000000a15822b/frameset.htm
http://service.sap.com/sap/support/notes/1028503
http://service.sap.com/sap/support/notes/1028503

pyrfc Documentation, Release 1.9.4

ABAP_SYSTEM = {
'snc_partnername': 'p:CN=I64, O=SAP-AG, C=DE',
'snc_lib': 'C:\\Program Files (x86)\\SECUDE\\OfficeSecurity\\secude.dll',

'name': 'I64',
'client': '800',
'ashost': '10.0.0.1',
'sysnr': '00',
'saprouter': SAPROUTER,
'trace': '3'

}

c = get_connection(ABAP_SYSTEM)

In this example the SNC_LIB key contains the path to security library (SAP cryptographic library or 3rd party
product). Alternatively, the SNC_LIB can be set as the environment variable, in which case it does not have to be
provided as a parameter for opening SNC connection.

SNC with X509

The client system PSE is used for opening SNC connection and forwarding user X509 certificate to NW ABAP
backend system, for authentication and logon.

Prerequisites

• The user does not have to be logged into the client system, neither the Single Sign On must be configured
on a client

• The trusted relationship must be established between the NW ABAP backend and the client system.

• The client system must be registered in the NW ABAP backend Access Control List (ACL), using transac-
tion SNC0

1.5. Security 21

pyrfc Documentation, Release 1.9.4

• Keystores are generated on a client system, using SAP cryptography tool SAPGENPSE and the environment
variable SECUDIR points to the folder with generated keystores

• User X509 certificate must be mapped to ABAP NW backend user, using transaction EXTID_DN

The same connection parameters as in a previous example, with X509 certificate added.

ABAP_SYSTEM = {
'snc_partnername': 'p:CN=I64, O=SAP-AG, C=DE',
'snc_lib': 'C:\\Program Files (x86)\\SECUDE\\OfficeSecurity\\secude.dll',

'x509cert': 'MIIDJjCCAtCgAwIBAgIBNzA ... NgalgcTJf3iUjZ1e5Iv5PLKO',

'name': 'I64',
'client': '800',
'ashost': '10.0.0.1',
'sysnr': '00',
'saprouter': SAPROUTER,
'trace': '3'

}

c = get_connection(ABAP_SYSTEM)

See SAP Help for more information.

22 Chapter 1. Documentation

http://help.sap.com/saphelp_nw04s/helpdata/en/b1/07dd3aeedb7445e10000000a114084/frameset.htm

pyrfc Documentation, Release 1.9.4

1.5. Security 23

pyrfc Documentation, Release 1.9.4

1.6 Building from source

SAP NW RFC Library shall be installed as described in the Installation. Instead of downloading and installing
precompiled egg, you need to prepare the toolchain and clone the pyrfc repository, so that you can build the
distribution release code and documentation.

1.6.1 Toolchain preparation

Linux platform

• Install Python

• Install easy_install as described in pyrfc installation

• Install SAP NW RFC Library

• To get any software from the Git source control system the Git client is required as well, use whatever your
distribution has

• Install Cython. Versions tested so far are 0.17.2, 0.19.0 and 0.20.0, other are expected to work as well.

• The system must contain a gcc compiler as well as development header and library files as provided by
your distribution.

Windows platform

• Install Python

• Install easy_install as described in pyrfc installation

• Install SAP NW RFC Library

• To get any software from the Git source control system the Git client is required as well. Download and
install from http://code.google.com/p/msysgit/downloads/list?can=3. During installation specify that Git
runs out of the Bash shell as you may need that shell later on.

• Install Cython, using Windows installer, see also http://wiki.cython.org/64BitCythonExtensionsOnWindows

• Download and install the compiler toolchain, tested on Windows 7 32 and 64 bit platforms

– MS VisualStudio2008 Express Edition

– Microsoft Windows SDK for Windows 7 and .NET Framework 3.5 SP1

1.6.2 Building the code

To build eggs for different Python versions, install these versions on your system and create a virtual environment
for each of these versions, for example:

virtualenv --python=<PATH e.g. c:\Python27\python.exe OR
/usr/bin/python2.7> ...

Otherwise, follow the example below.

Linux platform

Clone the repository:

git clone https://github.com/SAP/PyRFC

24 Chapter 1. Documentation

http://code.google.com/p/msysgit/downloads/list?can=3
http://www.lfd.uci.edu/~gohlke/pythonlibs/#cython
http://wiki.cython.org/64BitCythonExtensionsOnWindows
http://go.microsoft.com/?linkid=7729279
http://www.microsoft.com/en-us/download/details.aspx?id=3138

pyrfc Documentation, Release 1.9.4

Edit setup.py and set the CYTHON_VERSION

Build the distribution

python setup.py clean --all
python setup.py bdist_egg

The result is found in the dist/ directory. The process has to be done on all platforms for which we provide
eggs.

Windows platform

Open the GIT Bash shell and clone the repository.

git clone https://github.com/SAP/PyRFC

Open the CMD Shell from Microsoft Windows SDK 7.0 and change to cloned pyrfc folder.

Edit setup.py and set the CYTHON_VERSION

Set env variables for the release, use /x64 for 64 bit and /x86 for 32 bit:

set DISTUTILS_USE_SDK=1
setenv /x64 /release

Build the distribution:

python setup.py clean --all
python setup.py bdist_egg

Check the pyrfc\dist folder for a new created egg.

Virtual Environments

You may have buth 32bit and 64bit versions of Python installed on your system and use virtual environments. This
is basically possible (e.g. installing the 32bit version on 64 bit system in C:\Python27_32\, but beware of
modifying the PATH variable.

However, the PATH variable is modified when using a virtual environment, therefore modify the
Scripts/activate.bat file with:

set SAPNWRFC_HOME=C:\nwrfcsdk_x86
set PATH=C:\nwrfcsdk_x86\lib\;%PATH%
set PATH=%VIRTUAL_ENV%\Scripts;%PATH%

This assures that specific SAP NW RFC Library is used (e.g. 32bit in this example). This is not required for
building the distribution, but rather for importing the Python connector.

The build process remains the same, only before building the distribution, you need to activate the virtual environ-
ment and assure that library paths are correct in setup.py.

Python 3

Prerequisites for building on Python 3, tested on Linux Mint and Ubuntu

sudo apt-get install python3-setuptools python3-dev python-configparser
sudo easy_install3 pip
sudo pip3 install cython sphinx ipython

1.6. Building from source 25

pyrfc Documentation, Release 1.9.4

1.6.3 Building the documentation

Ensure that the lib directory of the SAP NW RFC library is in your PATH environment.

Change into the doc directory and type:

make clean
make html

The result is found in _build/html and for other options call make.

• If you get an error ‘sphinx-build’ is not recognized as an internal or external command, operable program
or batch file on calling make html, install sphinx

• If you have DLL import errors (Windows), check the lib directory of the SAP NW RFC Library PATH env
variable.

The docu is hosted on GitHub Pages, a propietary solution where a git branch gh-pages is created as an orphan
and the output of the documentation build process (_build/html) is stored in that branch. GitHub then serves
these files under a special /pages/ url.

To update GitHub Pages, copy everyhing under _build/html and overwrite the existing files in the gh-pages
branch root.

cp _build/html ~/tmp
git checkout gh-pages
rm -Rf *.html *.js *.egg build doc _* pyrfc* *.inv .buildinfo
cp -R ~/tmp/_build/html/. .

Note: An additional file .nojekyll is placed in gh-pages to disable the default GitHub processing which breaks
sphinx style folders with leading underscores.

gh-pages updates are a bit inconvenien, check if this answer helps
http://stackoverflow.com/questions/4750520/git-branch-gh-pages

1.7 Remarks

1.7.1 RFC call results differ from expected

The response when invoking ABAP function module directly via transaction SE37 may be different from the
response when called via Python connector. Typically leading zeros are not shown in SE37 but sent to Python
when remote FM is called from Python.

This is surely a bug and in general there are few possible causes: the pyrfc package, the SAP NW RFC Library,
or the function module itself. Bugs in SAP NW RFC Library are unlikely, in pyrfc less likely and the cause is
usually the implementation of the ABAP FM, not respecting technical restriction described here.

Conversion (“ALPHA”) exists are triggered in SAP GUI and in SE37 but not when the ABAP FM is called via
SAP RFC protocol, therefore the rectifying logic shall be implemented in the FM. The behaviour can be also
caised by different authorization levels, when ABAP FM is invoked locally or remotely, via SAP RFC protocol.

Please try to assure that RFC is working (e.g. testing with the C connector), before reporting the problem.

1.7.2 Multiple threads

If you work with a multiple thread environment, assure that each thread has its own Connection object. The
reason is that during the RFC calls, the Python global interpreter lock (GIL) is released.

26 Chapter 1. Documentation

http://stackoverflow.com/questions/4750520/git-branch-gh-pages
http://sapinsider.wispubs.com/Assets/Articles/2001/January/BAPI-Conversion-Issues

pyrfc Documentation, Release 1.9.4

1.7.3 Open, valid, and alive connections

A connection may be closed by the client (e.g. via Connection.close()) or by the server (e.g. if an ABAP
message is raised). The connection object maintains a object variable alive to record the actual state. How-
ever, the variable is of internal use only, as the connection object will try to reopen the connection, if needed.
This leads to the – seemingly strange – situation that an explicitly closed connection will allow you to call, e.g.
Connection.ping().

Implementation remark: It is not possible to query the actual state of the connection in a reliable manner. Although
SAP NW RFC Library offers the function RfcIsConnectionHandleValid(), it will only return False if
the connection was closed by the client, not if it was closed from the server side. Therefore, an explicit object
variable is kept.

1.8 Bibliography

1.8.1 Schmidt and Li (2009a)

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK -
Part 1: RFC Client Programming, SAP Professional Journal, pp 1-16 (originally published in November 2007)

1.8.2 Schmidt and Li (2009b)

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK - -
Part 2: RFC Server Programming, SAP Professional Journal, pp 1-13 (originally published in January/February
2008)

1.8.3 Schmidt and Li (2009c)

Improve communication between your C/C++ applications and SAP systems with SAP NetWeaver RFC SDK -
Part 3: Advanced Topics, SAP Professional Journal, pp 1-18 (originally published in March 2008)

1.8. Bibliography 27

https://scn.sap.com/docs/DOC-52886
https://scn.sap.com/docs/DOC-52887
https://scn.sap.com/docs/DOC-52888

pyrfc Documentation, Release 1.9.4

28 Chapter 1. Documentation

CHAPTER 2

API documentation

2.1 pyrfc

The pyrfc package.

2.1.1 Connection

2.1.2 Server

2.1.3 FunctionDescription

Note: Actually, the FunctionDescription class does not support exceptions.

2.1.4 TypeDescription

2.1.5 Errors

If a problem occurs in the Python connector or in an underlying component (e.g. C connector, SAP system, ABAP
code, ...), an exception is raised. The class of the exception indicates where the problem occurred.

1. RFCError: This error is raised, if a problem occurred in the Python connector.

2. RFCLibError: This error is raised, if a problem occurred in the C connector.

3. All other errors represent errors with the RFC call to the SAP backend system. For these errors, the errorInfo
struct of the C connector is wrapped, e.g. for a given exception e, the error code is available in e.code.
The class of the error depends on the group of the error.

29

pyrfc Documentation, Release 1.9.4

Error types, codes, groups, and classes

Schmidt and Li (2009a) describe four possible error types on the basis of the return code (i.e. error code) of a
RFM invocation:

• ABAP exception,

• system failure,

• ABAP messages, and

• communication failure.

However, there are in total roughly 30 possible return codes that indicate some kind of error. As each error
information struct provides an error group information with seven possible groups, which was taken as the basis
for the exception classes.

The following table should facilitate the matching between the different error representations.

30 Chapter 2. API documentation

pyrfc Documentation, Release 1.9.4

type (SPJ) code [numeric] (C) group (C) class (Python)
ABAP exception RFC_ABAP_EXCEPTION [5] ABAP_APPLICATION_FAILUREABAPApplica-

tionError
system failure RFC_ABAP_RUNTIME_FAILURE

[3]
ABAP_RUNTIME_FAILURE ABAPRuntimeEr-

ror
ABAP message RFC_ABAP_MESSAGE [4] ABAP_RUNTIME_FAILURE ABAPRuntimeEr-

ror
communication
failure

RFC_COMMUNICATION_FAILURE
[1]

COMMUNICA-
TION_FAILURE

Communication-
Error

RFC_LOGON_FAILURE [2] LOGON_FAILURE LogonError

2.1. pyrfc 31

pyrfc Documentation, Release 1.9.4

32 Chapter 2. API documentation

CHAPTER 3

Change log

3.1 Change log

1.9.4 (Development) - RfcGetVersion API added - More docu - Unit tests

3.1.1 1.9.3 (2014-01-26)

• Fixed Date wrap bug (reported by Flavio Marinone)

• Documentation rework

3.1.2 1.9.2 (2012-11-26)

• Fixed BCD wrap bug (reported by Thomas Marcon)

3.1.3 1.9.1 (2012-10-02)

• Added server usage

– Server class (wraps server related activities)

– FunctionDescription and TypeDescription as classes for improved metadata handling.

• Added support for transactional, queued, and background RFC (tRFC, qRFC, bgRFC) for client usage.

• Renamed exceptions in accordance with PEP08:

– Exception names changed to Error (e.g. ExternalRuntimeException renamed to ExternalRuntimeEr-
ror).

– Rfc now uppercase, e.g. RFCLibError.

– Abap now uppercase, e.g. ABAPRuntimeError.

• Connection class

– removed __init__ optional parameter strip, added config dictionary as optional parameter.

– renamed connectionInfo to get_connection_attributes()

– renamed resetServerContext to reset_server_context()

• RFCTYPE_BCD fields are now converted to Decimal object (wrap). For filling, you may pass either Deci-
mal objects or floats.

33

pyrfc Documentation, Release 1.9.4

3.1.4 1.9 (2012-09-14)

• Restructured exceptions:

– All exceptions are now directly available in the pyrfc package (e.g. from pyrfc import LogonExcep-
tion)

– RfclibException renamed to RfcLibException

– All used exceptions (corresponding to RFC error group classes) inherit now from RfcLibException
(implication for LogonException, AbapRuntimeException, AbapApplicationException)

– Constructor for RfcLibException changed (first argument is now message), allowing to raise exceptions
manually with only one string value

– AbapException deleted.

– Added external exceptions (ExternalRuntimeException, ExternalApplicationException, ExternalAu-
thorizationException)

• restructured and added tests (MRFC and STFC function groups).

– fixed bugfix implications from rev. 1.8.2. (LogonException does not have code fields now)

• Added examples (sample/): printDescription.py

3.1.5 1.8.2 (2012-04-05)

• bugfix: LogonException now inherits from RfcException instead of RfcLibException so it only needs one
message argument.

3.1.6 1.8.1 (2012-02-27)

• (bugfix in removed module)

3.1.7 1.8 (2012-02-07)

• added strip parameter in Connection to rstrip whitespaces in rfc results

• added resetServerContext

• fixed bug when dealing with xstring results

• added __bool__ for easy check if connections is alive

• release GIL for RfcInvoke and RfcOpenConnection

3.1.8 1.7 (2011-12-23)

• wrapped fillVariable into try..except block to enrich exception information

• Added _pyrfc.connectionInfo (sapnwrfc.RfcGetConnectionAttributes)

3.1.9 1.6 (2011-12-12)

• added bcd conversion

• added performance test

• added setup.py test suite

34 Chapter 3. Change log

pyrfc Documentation, Release 1.9.4

3.1.10 1.5 (2011-12-05)

• first buildout configuration that works on Linux and Windows

• rename the C extension to _pyrfc and importing it at the root of a new “real” Python package pyrfc.
This is fully backwards compatible and allows splitting the single module into a C-only part and separate
Python modules for bettr maintainability.

• move pure Python code from the Cython extension module into separate Python modules for maintainability

3.1.11 1.4 (2011-11-25)

• start on package documentation

• re-added support for zero dates

3.1.12 1.3 (2011-11-22)

• fixed various buffer length issues

3.1.13 1.2 (2011-11-18)

• malloc’ed buffer, never too small

• type-specific RFCGetters

3.1.14 1.1 (2011-11-16)

• your buffer was too small

3.1.15 1.0 (2011-11-11)

• first egg release

3.1. Change log 35

pyrfc Documentation, Release 1.9.4

36 Chapter 3. Change log

CHAPTER 4

Indices and tables

• genindex

• search

37

	Documentation
	Introduction
	Installation
	Client scenario
	Server scenario
	Security
	Building from source
	Remarks
	Bibliography

	API documentation
	pyrfc

	Change log
	Change log

	Indices and tables

